Colisión de dos partículas


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Colisión de dos partículas"

Transcripción

1 Capítulo 14 Colisión de dos partículas 14.1 Descripción de un proceso de colisión en el sistema centro de masa En el capítulo anterior describimos la colisión de un proyectil contra un centro de fuerza que permanece fijo. Aunque ésta es una buena aproximación cuando el blanco tiene mucha más masa que el proyectil, en general ha de retroceder por efecto de la colisión. En el problema de la colisión de una partícula alfa contra un nucleo de oro, por ejemplo, la masa de este último es tan grande que dicho retroceso resulta despreciable. Pero éste no es siempre el caso. Consideremos entonces la colisión de una partícula de masa m P contra otra de masa m B. Este problema se puede estudiar más fácilmente desde un sistema de coordenadas con el origen fijo al centro de masa. En efecto, ya vimos que la posición relativa r = r P r B y la del centro de masa r cm = (m P r P + m B r P )/(m P + m B ) permiten describir completamente el estado del sistema. r P = m m P r + r cm r B = m m B r + r cm donde m = m P m B /(m P + m B ) es la masa reducida del sistema. Puesto que el centro de masa se mueve en una trayectoria rectilínea y uniforme de velocidad v cm = m P v /(m P + m B ), todo el problema se reduce a hallar la evolución del vector posición relativo r = r(t). En efecto, tal como vimos al principio del curso, la evolución de un sistema de dos partículas en interacción mutua por medio de una energía potencial V ( r P r B ) puede reducirse al de una única partícula ficticia de masa m = m P m B /(m P + m B ) y posición r = r P r B en presencia de un campo de fuerza central de energía potencial V = V (r). Vemos entonces que la colisión de dos partículas puede describirse simplemente en el sistema centro de masa como la dispersión por un centro de fuerza de una 1

2 2 Capítulo 14. Colisión de dos partículas partícula de masa igual a la masa reducida m del par y velocidad igual a la velocidad relativa v. De esta manera el problema de colisión se reduce al caso que hemos estado describiendo hasta ahora de la colisión de una partícula por un centro de fuerza fijo, en el sentido de que una vez hallada la solución r(t) de este problema, podemos eventualmente calcular las trayectorias r P (t) y r B (t) de ambas partículas en base a las ecuaciones anteriores. Manteniendo la notación del capítulo anterior, la velocidad relativa antes de la colisión es v. Por conservación de energía, el módulo de esta velocidad relativa v es el mismo después de la colisión, v = v. En otras palabras, en el sistema centro de masa el efecto neto de la colisión es rotar la velocidad v en un dado ángulo θ, permaneciendo inalterada su magnitud. Lo que necesitamos ahora es encontrar la relación entre este ángulo θ de dispersión de la partícula reducida (que es el que aprendimos a calcular en el capítulo anterior) con el verdadero ángulo de dispersión del proyectil θ P que es lo que se mide en el sistema de referencia del laboratorio. Conocida esta relación, podremos pasar de la sección eficaz diferencial calculada en el sistema de referencia fijo al centro de masa /dω a la sección eficaz medida en el sistema de referencia del laboratorio / por medio del Jacobiano correspondiente = dω dω = sen(θ) dθ dφ dsen(θ P ) dθ P dφ P dω = sen(θ) dθ dsen(θ P ) dθ P dω donde hemos utilizado el hecho de que la transformación de Galileo no afecta el plano de colisión, es decir que φ = φ P. Este sencillo resultado es de la mayor importancia, pues nos dice que la sección eficaz diferencial calculada para el problema equivalente de una partícula, es también la sección eficaz diferencial para la dispersión del proyectil en la colisión de dos partículas entre sí. En este sentido, los resultados obtenidos en el capítulo anterior siguen siendo aplicables, aunque referidos a un sistema de coordenadas fijo al centro de masa Descripción de un proceso de colisión en el sistema de laboratorio Entre la velocidad final del proyectil v P referida al sistema del laboratorio y la velocidad v de la partícula de masa reducida hay una simple relación vectorial que resulta de derivar respecto del tiempo la ecuación de transformación estudiada en la sección anterior v P = m m P v + v cm = m m P v + m m B v Los ángulos que forman v P y v con la velocidad inicial v son los ángulos de dispersión en los sistemas de laboratorio θ P y centro de masa θ, respectivamente,

3 14.2. Descripción de un proceso de colisión en el sistema de laboratorio 3 con lo cual v P cos(θ P ) = m m P v cos(θ) + m m B v v P sen(θ P ) = m m P v sen(θ) Dividiendo miembro a miembro y teniendo en cuenta que v = v obtenemos finalmente m B sen(θ) tg(θ P ) = m P + m B cos(θ) ó, resolviendo para cosθ, cos(θ) = m P sen 2 (θ P ) ± cos(θ P ) 1 m2 P sen m B m 2 2 (θ P ) B Si m P < m B la relación entre ambos ángulos es uno a uno, debiéndose tomar el signo + de manera que θ = 0 cuando θ P = 0. En esta situación el proyectil puede ser desviado, en principio, en cualquier dirección. Esto es lo que ocurre en la colisión de una partícula alfa contra un núcleo de oro donde ahora podemos verificar que, siendo m B /m P = 49.25, ambos ángulos de dispersión son aproximadamente iguales. El blanco experimenta un retroceso muy pequeño y en la práctica actúa como un centro de fuerza fijo. Si m P > m B, la relación entre θ y θ P es bivaluada. Además el proyectil sólo puede ser dispersado en un ángulo que no exceda un cierto valor máximo, θ P arcsen(m B /m P ). Ya que estamos, podemos encontrar la dirección en que retrocede el blanco debemos realizar un cálculo similar a partir de la ecuación v B = m m B v + v cm y teniendo en cuenta que en el sistema centro de masa ese ángulo es π θ. Se obtiene sen(π θ) tg(θ B ) = 1 + cos(π θ) o sea θ B = 1 (π θ) 2 Tal como vimos, conocida la sección eficaz en el sistema centro de masa /dω, el pasaje al sistema de laboratorio sólo requiere calcular el Jacobiano para la transformación de θ P por θ. Sin embargo, en este punto debemos manejarnos con mucho cuidado. Como señalamos anteriormente, cuando m P > m B cada ángulo

4 4 Capítulo 14. Colisión de dos partículas θ P en el sistema de referencia del laboratorio está relacionado, no con uno, sino con dos ángulos θ + y θ en el sistema centro de masa. cos(θ ± ) = m P sen 2 (θ P ) ± cos(θ P ) 1 m2 P sen m B m 2 2 (θ P ) B Al calcular la sección eficaz en el sistema del laboratorio, debemos sumar estas dos contribuciones a la intensidad de partículas dispersadas en dicha dirección θ P. dω (θ d cos(θ + ) P ) = (θ + d cos(θ ) ) + (θ ) d cos(θ P ) dω CM d cos(θ P ) dω CM Cuando m P < m B, en cambio, tenemos una única contribución correspondiente al ángulo θ +. Resulta finalmente (θ P ) = 1 + (m P /m B ) 2 cos(2θ P ) 1 (m P /m B ) 2 sen 2 (θ P ) + 2 m P cos(θ P ) (θ + ) + m B dω CM + Θ(m P m B ) 1 + (m P /m B ) 2 cos(2θ P ) 1 (m P /m B ) 2 sen 2 (θ P ) 2 m P cos(θ P ) (θ ) m B dω CM Θ (m B /m P senθ P ) con Θ(x) = 1 si x 0 y Θ(x) = 0 si x < 0. Esto en cuanto a la dispersión del proyectil. Sin embargo, también podriamos querer realizar un experimento de colisión donde lo que nos interesa es el ángulo θ B en que retrocede el blanco después de la colisión. De hecho, el desarrollo de nuevas técnicas experimentales han permitido realizar experimentos de colisiones atómicas con estas características. En este caso, la simplicidad de la relación θ B = (π θ)/2 se traslada a la ecuación de transformación entre el sistema centro de masa y el sistema de laboratorio dω (θ B) = d cos(θ) d cos(θ B ) (θ) = 2 dω dω (θ = π 2θ B) Θ (π/2 θ B ) Para terminar esta sección quisiera destacar la simplicidad conceptual de los cálculos que hemos realizado hasta este punto. En esencia nos hemos limitado a emplear la conservación del impulso y la energía. Y justamente lo elemental de su naturaleza explica su gran campo de validez. En tanto se conserve el impulso, lo que habrá de ocurrir en la mecánica cuántica; y en tanto que la colisión sea elástica, carecen de importancia los detalles del proceso y las ecuaciones de transformación del sistema centro de masa al sistema de laboratorio que hemos obtenido seguirán siendo válidas. En efecto sólo nos hemos preocupado por lo que ocurre con las partículas antes y después de la colisión, siendo indiferente que los fenómenos que ocurren al aproximarse una partícula a otra hayan sido clásicos o cuánticos. Por consiguiente estas ecuaciones de transformación pueden utilizarse también en el análisis de fenómenos cuánticos.

5 14.3. Dispersión de partículas idénticas Dispersión de partículas idénticas Una situación particularmente interesante se da cuando el blanco y el proyectil tienen la misma masa. En tal caso resulta θ P = 1 2 θ, θ B = 1 (π θ) 2 O sea que, después de la colisión, ambas partículas se mueven en direcciones que forman un ángulo recto entre ellas. La sección eficaz diferencial en el sistema de laboratorio resulta (θ P ) = 4 cos(θ P ) dω (θ = 2θ P ) Θ (π/2 θ P ) con θ P π/2. Ahora bien, si no sólo las masas de las partículas son iguales, sino que las mismas partículas son idénticas (como ocurre, por ejemplo, en una colisión electrón-electrón ó en una colisión neutrón-neutrón), no será posible distinguir después de la colisión cuál era la partícula blanco y cuál la partícula proyectil. En este caso debemos sumar ambas contribuciones, resultado (θ P ) = 4 cos(θ P ) ( dω (θ = 2θ P ) + dω (θ = π 2θ P ) ) Θ (π/2 θ P ) En particular, si la interacción es coulombiana, reemplazando la fórmula de Rutherford resulta ( ) Z 2 [ ] 1 = cos(θ P ) E sen 4 (θ P ) + 1 Θ (π/2 θ cos 4 P ) (θ P ) con E = m P v 2 / 2 la energía cinética inicial del proyectil en el sistema de laboratorio. Cuánticamente se obtiene el siguiente resultado 1 = ( ) Z 2 [ 1 1 cos(θ P ) + E sen 4 θ P cos 4 θ P ± 2 cos ((2Z / h v ) ln (cot 2 ] θ P ) ) sen 2 θ P cos 2 θ P Θ (π/2 θ P ) donde h = erg.seg es la constante reducida de Planck. En el doble signo, la suma corresponde al caso donde el espín total del sistema, esto es la suma de los momentos angulares intrínsecos de ambas partículas, es par. La diferencia corresponde al caso de espín total impar. Los dos primeros términos representan el resultado clásico. El término de interferencia es de origen puramente cuántico. Sin embargo, si la velocidad es pequeña, v Z / h, entonces el 1 L. D. Landau and E. M. Lifshitz: Quantum Mechanics (Pergamon Press, Oxford).

6 6 Capítulo 14. Colisión de dos partículas término de interferencia es muy fuertemente oscilante y, por lo tanto, inobservable experimentalmente. Recuperamos así la expresión clásica. El término de interferencia se superpone en forma oscilatoria al resultado clásico. En particular la sección eficaz cuántica para la dispersión en π/4 es el doble de la clásica cuando el espín total es par. Este efecto fue verificado en 1930 por Chadwick para la colisión entre partículas alfa. Cuando el espín total es impar, en cambio, la sección eficaz para la dispersión en π/4 es nula James Chadwick 14.5 Energía transferida En toda colisión elástica, el proyectil pierde parte de su energía cinética inicial, que transfiere al blanco. Esta energía cinética final del blanco es T = 1 2 m B m 2 1 v + v cm = m B 2 m B vcm 2 (2 + 2cos(θ)) 2 donde hemos aplicado que v = v y v cm = mv /m B y que el ángulo entre ambas velocidades es igual a π θ. Finalmente, obtenemos que esta energía transferida está dada por T = T o sen 2 (θ/2) con m 2 T o = 4 E m B m P Vemos que la energía transferida es máxima cuando θ = π, esto es cuando se produce un proceso de retrodispersión en el sistema centro de masa. En el caso particular de que sea m P = m B, vemos que T o es igual a la energía cinética inicial del proyectil, T o = E. Esto quiere decir que en el proceso de retroceso correspondiente a θ = π, la transferencia de energía es máxima, el proyectil detiene su movimiento y la partícula blanco adquiere toda la energía cinética inicial. Esta transferencia de energía cinética mediante colisiones constituye el principio de los moderadores de partículas rápidas, por ejemplo neutrones en reactores nucleares. Puesto que la transferencia de energía es máxima cuando m B = m P, resulta evidente que los mejores moderadores de neutrones son los elementos ligeros, idealmente el hidrógeno. Sin embargo las pilas de hidrógeno no son prácticas (debido a que capturan neutrones), aunque suelen emplearse en forma de parafinas. En general, se utilizan el deuterio de masa m B 2m P y el carbono de masa m B 12m P. La expresión T = T o sen 2 (θ/2) provee una relación directa entre la energía cinética final del blanco T y el ángulo de dispersión del proyectil en el sistema centro de masa. Esto permite relacionar la sección eficaz diferencial en el sistema

7 14.5. Energía transferida 7 centro de masa /dω CM (θ) directamente con el espectro de energías del blanco /dt, = T o dω CM 4π dt Θ (T o T ) Esta forma de expresar la sección eficaz diferencial 2 en términos de la energía transferida del proyectil al blanco es muy utilizada en la descripción de los procesos de frenamiento de partículas en medios gaseosos o materiales. Por ejemplo, la sección eficaz de Rutherford se escribe dt = 2π Z 2 m B v 2 T 2 Θ (T o T ) 2 Un comentario importante: Puesto que la sección eficaz diferencial en las variables θ, θ P, θ B ó T sólo difieren en un Jacobiano, Se obtiene la sección eficaz σ por integración de cualquiera de ellas.

Órbitas producidas por fuerzas centrales

Órbitas producidas por fuerzas centrales Capítulo 10 Órbitas producidas por fuerzas centrales 10.1 Introducción En un capítulo anterior hemos visto una variedad de fuerzas, varias de las cuales, como por ejemplo la elástica, la gravitatoria y

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

Anexo a la guía 4 Geometría: ejemplos y comentarios

Anexo a la guía 4 Geometría: ejemplos y comentarios Anexo a la guía 4 Geometría: ejemplos y comentarios Sergio Dain 26 de mayo de 2014 En las guías 1 y 2 discutimos vectores, covectores y tensores de manera puramente algebraica, sin hacer referencia a la

Más detalles

La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler

La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler Campillo IES Ruiz de Alda Isaac Peral s/n 30730 San Javier (Murcia) solivare@fresno.pntic.mec.es

Más detalles

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad 3. Fuerza e ímpetu El concepto de ímpetu (cantidad de movimiento o momentum surge formalmente en 1969 y se define como: El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

Las leyes de Kepler y la ley de la Gravitación Universal

Las leyes de Kepler y la ley de la Gravitación Universal Las leyes de Kepler y la ley de la Gravitación Universal Rosario Paredes y Víctor Romero Rochín Instituto de Física, UNAM 16 de septiembre de 2014 Resumen Estas notas describen con cierto detalle la deducción

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Campo eléctrico 1: Distribuciones discretas de carga

Campo eléctrico 1: Distribuciones discretas de carga Campo eléctrico 1: Distribuciones discretas de carga Introducción Carga eléctrica Conductores y aislantes y carga por inducción Ley de Coulomb El campo eléctrico Líneas de campo eléctrico Movimiento de

Más detalles

MOMENTO LINEAL OBJETIVOS

MOMENTO LINEAL OBJETIVOS MOMENTO LINEAL OBJETIVOS Comprender el significado físico de momento lineal o cantidad de movimiento como medida de la capacidad de un cuerpo de actuar sobre otros en choques. ( movimientos unidimensionales)

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Tema 4. Sistemas de partículas

Tema 4. Sistemas de partículas Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 4. Sistemas de partículas Índice 1. Introducción

Más detalles

Trabajo, Energía y Potencial

Trabajo, Energía y Potencial Cátedra de Física Experimental II Física III Trabajo, Energía y Potencial Prof. Dr. Victor H. Rios 2015 METAS DE APRENDIZAJE Al estudiar este capítulo, usted aprenderá: A calcular la energía potencial

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO BOLILLA 5 MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO Sistemas de referencia Inerciales y No-inerciales En la bolilla anterior vimos que las leyes de Newton se cumplían en marcos de referencia inercial.

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química UAM CSIC Grupo 9 Febrero Ejercicios Resueltos del Tema..5 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: y. Consejo: En todos los ejercicios es esencial dibujar el dominio

Más detalles

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético Movimiento Armónico Simple Estudio cinemático, dinámico y energético Objetivos Identificar el M.A.S. como un movimiento rectilíneo periódico, oscilatorio y vibratorio Saber definir e identificar las principales

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Estabilidad dinámica Introducción

Estabilidad dinámica Introducción Figura 127: Varada Si el momento de asiento unitario del barco, en las condiciones de desplazamiento en las que se encuentra, es M u, tendremos que la alteración producida al bajar la marea de forma que

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

Resistencia de Materiales

Resistencia de Materiales Tema 5 - Deflexión en Vigas Resistencia de Materiales Tema 5 Deflexión en vigas Sección 1 - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este tema se debe recordar

Más detalles

Capítulo 1. Vectores en el plano. 1.1. Introducción

Capítulo 1. Vectores en el plano. 1.1. Introducción Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

MEDIDA DEL ÍNDICE DE REFRACCIÓN DE UN LÍQUIDO

MEDIDA DEL ÍNDICE DE REFRACCIÓN DE UN LÍQUIDO MEDIDA DEL ÍNDICE DE REFRACCIÓN DE UN LÍQUIDO Rubén Fernández Busnadiego Óptica I. Grupo C rubencisv@hotmail.com Índice 1. Objetivos e introducción 1.1. El índice de refracción 1.2. La ley de Snell 1.3.

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora

Más detalles

Equipo que transforma la energía. Figura 6.1 Flujo de energía

Equipo que transforma la energía. Figura 6.1 Flujo de energía ÉRDIDAS Y CALENTAMIENTO EN MÁQUINAS ELÉCTRICAS 6.1 Introducción En todo proceso de transformación de la energía, se produce una diferencia entre la potencia que entrega el equipo para su utilización (otencia

Más detalles

1.1Estándares de longitud, masa y tiempo

1.1Estándares de longitud, masa y tiempo CLASES DE FISICA 1 PRIMER PARCIAL 1) UNIDADES DE MEDIDA 2) VECTORES 3) MOVIMIENTO EN UNA DIMENSION 4) MOVIMIENTO EN DOS DIMENSIONES 5) MOVIMIENTO RELATIVO FÍSICA Y MEDICIONES Al igual que todas las demás

Más detalles

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS COLISIONES O CHOQUES 1. INTRODUCCIÓN Las colisiones o choques son procesos en los cuales partículas o cuerpos entran durante un determinado tiempo Δt en interacción de magnitud tal, que pueden despreciarse,

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

= 4.38 10 0.956h = 11039 h = 11544 m

= 4.38 10 0.956h = 11039 h = 11544 m PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

1. DEFINICION DE ENERGIA ESPECIFICA

1. DEFINICION DE ENERGIA ESPECIFICA ENERGIA ESPECIFICA 1. DEFINICION DE ENERGIA ESPECIFICA El concepto de energía específica, desarrollado en 191 por Bakmeteff, deriva de la ecuación de Bernoulli antes mostrada. Cuando la distribución de

Más detalles

Fundamentos físicos de la teledetección

Fundamentos físicos de la teledetección Tema 1 Fundamentos físicos de la teledetección 1.1 La radiación electromagnética Dada la importancia que la radiación electromagnética tiene como transmisor de información en todas las formas de teledetección,

Más detalles

1. Energía y momentum

1. Energía y momentum Teoría de la Relatividad Especial. Segunda parte. Víctor Muñoz, noviembre 2006 1. Energía y momentum 1.1. Introducción Hasta el momento, hemos estudiado la Relatividad Especial a través de los gráficos

Más detalles

Mecánica. Cecilia Pardo Sanjurjo. Tema 06. Está-ca analí-ca. Método de los trabajos virtuales. Método del potencial.

Mecánica. Cecilia Pardo Sanjurjo. Tema 06. Está-ca analí-ca. Método de los trabajos virtuales. Método del potencial. Mecánica Tema 06. Está-ca analí-ca. Método de los trabajos virtuales. Método del potencial. Cecilia Pardo Sanjurjo DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Este tema se publica bajo Licencia: Crea-ve

Más detalles

2 Olimpiada Asiática de Física

2 Olimpiada Asiática de Física 2 Olimpiada Asiática de Física Taipei, Taiwan 200 Problema : ¾Cuándo se convertirá la Luna en un satélite sincrónico? El periodo de rotación de la Luna en torno a su eje es actualmente el mismo que su

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

MODULACIONES ANGULARES. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.

MODULACIONES ANGULARES. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. MODULACIONES ANGULARES. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. INTRODUCCIÓN. 1. MODULACIÓN DE FASE (PM) Y MODULACIÓN

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

C E UNIVERSIDAD DE A CORUÑA. con un punto fijo. Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido rígido.

C E UNIVERSIDAD DE A CORUÑA. con un punto fijo. Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido rígido. H A C L U C E UNIVERSIDAD DE A CORUÑA Dinámica del sólido rígido con un punto fijo Ana Jesús López Díaz Objetivo Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido

Más detalles

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE 4.1 GENERALIDADES Se dice que una pieza está sometida a flexión pura

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA PÉNDULO BALÍSTICO

UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA PÉNDULO BALÍSTICO 3 PÉNDULO BALÍSTICO OBJETIVOS Investigar el péndulo alístico. Revisar la teoría física y los principios fundamentales que estan detrás del experimento planeado. Determinar la velocidad de disparo de un

Más detalles

Mecánica II. 2010 Departamento de Física Universidad de Sonora

Mecánica II. 2010 Departamento de Física Universidad de Sonora Mecánica II Dr. Roberto Pedro Duarte Zamorano 010 Departamento de Física Universidad de Sonora Temario 1) Cinemática rotacional. ) Dinámica rotacional. 3) Las leyes de Newton en sistemas de referencia

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

Diferenciabilidad de funciones de R n en R m

Diferenciabilidad de funciones de R n en R m Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.

Más detalles

Capítulo 2 Energía 1

Capítulo 2 Energía 1 Capítulo 2 Energía 1 Trabajo El trabajo realizado por una fuerza constante sobre una partícula que se mueve en línea recta es: W = F L = F L cos θ siendo L el vector desplazamiento y θ el ángulo entre

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Unidad III. Determinación de órbitas

Unidad III. Determinación de órbitas P 1 Sector Orbital S r 1 r P Figura 1: Unidad III. Determinación de órbitas En la unidad precedente se trató el problema básico de determinar la posición y velocidad de un objeto a partir de sus elementos

Más detalles

Funciones elementales

Funciones elementales Funciones elementales 3.1. Función exponencial Ya hemos introducido la exponencial compleja definiéndola como e z = e x (cosy + i sen y) para todo z = x + iy C. Dicha definición fue propuesta por Euler

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

5. Introducción a la Formulación Lagrangiana y Hamiltoniana

5. Introducción a la Formulación Lagrangiana y Hamiltoniana 5. Introducción a la Formulación Lagrangiana y Hamiltoniana Introducción Definiciones: coordenadas, momentos y fuerzas generalizados. Función Lagrangiana y ecuaciones de Euler-Lagrange. Coordenadas cíclicas.

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

Principio de Conservación de la nergía nergía La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA: CHOQUES . TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después

Más detalles

De la teoría a la demostración.

De la teoría a la demostración. Los orbitales híbridos sp el ángulo de 0º: De la teoría a la demostración. Antonio José Sánchez. Introducción objetivo Describir los datos experimentales es el objetivo de toda ciencia. En Química, los

Más detalles

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA Antonio J. Barbero / Alfonso Calera Belmonte / Mariano Hernández Puche Departamento de Física Aplicada UCLM Escuela Técnica Superior de Agrónomos

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

INTRODUCCIÓN A VECTORES Y MAGNITUDES

INTRODUCCIÓN A VECTORES Y MAGNITUDES C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida Concepto de integral definida: INSTITUTO UNIVERSITARIO DE TECNOLOGÍA INTEGRAL DEFINIDA Sea una función continua definida en [a, b]. Supongamos que dividimos este intervalo en n subintervalos : [a, ], [,

Más detalles

Resolución de problemas. Temas: VOR e ILS

Resolución de problemas. Temas: VOR e ILS Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Programa de Física General I

Programa de Física General I Programa de Física General I Primer semestre - Años 2013 y 2014 I - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto, métodos de la Física y relación

Más detalles

CONCEPTOS BÁSICOS DE ELECTRICIDAD

CONCEPTOS BÁSICOS DE ELECTRICIDAD CONCEPTOS BÁSICOS DE ELECTRICIDAD Ley de Coulomb La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

2.5 Linealización de sistemas dinámicos no lineales

2.5 Linealización de sistemas dinámicos no lineales 25 Linealización de sistemas dinámicos no lineales En las secciones anteriores hemos visto como representar los sistemas lineales En esta sección se estudia una manera de obtener una aproximación lineal

Más detalles

A modo de Presentación

A modo de Presentación Ecuaciones Diferenciales de Orden Superior Primera Parte Funciones Eulerianas Ing. Ramón Abascal Prof esor Titular de Análisi s de Señales y Sist emas y Teoría de los Circuit os I I en la UTN, Facultad

Más detalles

Teoría de Conjuntos y Funciones

Teoría de Conjuntos y Funciones Elaborado por: Lic. Eleazar J. García República Bolivariana de Venezuela. Tinaco.- Estado Cojedes Teoría de Conjuntos Funciones Este capítulo comienza con el estudio de las nociones de la teoría de conjuntos

Más detalles

Ecuación ordinaria de la circunferencia

Ecuación ordinaria de la circunferencia Ecuación ordinaria de la circunferencia En esta sección estudiatemos la ecuación de la circunferencia en la forma ordinaria. Cuando hablemos de la forma ordinaria de una cónica, generalmente nos referiremos

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

Algebra Lineal -III: Álgebra Vectorial en R2 and R 3

Algebra Lineal -III: Álgebra Vectorial en R2 and R 3 Algebra Lineal -III: Álgebra Vectorial en R2 and R 3 José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingeniería, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@ugto.mx

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)

Más detalles

TEMA 8 CAMPO ELÉCTRICO

TEMA 8 CAMPO ELÉCTRICO TEMA 8 CAMPO ELÉCTRICO INTERACCIÓN ELECTROSTÁTICA Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Todos estamos familiarizados con los efectos

Más detalles
SitemapThe Flash Action | Wicked Lovely series | BBC Radio 1 Live Lounge 2015 5 Seconds of Summer.