_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano
- Martín Soler Gutiérrez
- hace 2 años
- Vistas:
Transcripción
1 24 Unidad II Vectores
2 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas magnitudes escalares. Otras precisan de dirección y sentido y las llamamos magnitudes vectoriales. Así, por ejemplo, si decimos que Teófilo tiene una temperatura de 38 ºC, sabemos perfectamente que tiene fiebre y si Anacleto mide 185 cm de altura y su masa es de 45 kg, está claro que es sumamente delgado. 25 Cuando una magnitud queda definida por su valor recibe el nombre de magnitud escalar. Otras magnitudes, con su valor numérico, no nos suministran toda la información. Si nos dicen que un coche corría a 80 km/h apenas sabemos algo más que al principio. Deberían informarnos también desde dónde corría y hacia qué lugar se dirigía. Estas magnitudes que, además de su valor precisan una dirección se llaman magnitudes vectoriales, y se representan mediante vectores. Por tanto podemos decir que: Denominamos magnitudes escalares a aquellas que quedan completamente identificadas dando su valor, que siempre es un número real acompañado de una unidad. Ejemplos; masa, temperatura, densidad, tiempo, etc. Denominamos magnitudes vectoriales a aquellas que quedan completamente identificadas dando su módulo, dirección y sentido. Por ejemplo velocidad, aceleración, fuerza, etc. El módulo de una magnitud vectorial siempre es un número real positivo. Para trabajar con magnitudes vectoriales utilizamos vectores. Un vector es un segmento orientado, la longitud del cual representa su módulo, y donde la dirección y sentido se pueden determinar tanto matemáticamente como geométricamente. Para simbolizar magnitudes vectoriales dibujaremos una flecha sobre el símbolo que representa a la magnitud: v (velocidad), a (aceleración), etc. En general cuando se escribe una magnitud vectorial sin flecha, se está haciendo referencia a su módulo. Los vectores se representan gráficamente en un sistema de coordenadas cartesianas, y numéricamente por 2 números (en el plano) y por tres (en el espacio). Estos números se denominan coordenadas cartesianas del vector.
3 26 Tenemos además dos tipos de magnitudes en función de estar definidas por ellas mismas o poderse descomponer en otras que llamamos fundamentales. Las magnitudes que pueden descomponerse en otras fundamentales las llamamos magnitudes derivadas. La mecánica clásica tiene las magnitudes fundamentales de: Longitud (l) cuya dimensión es [L], Tiempo (t) cuya dimensión es [T], Masa cuya dimensión es [M], y como ejemplo de magnitudes derivadas se tienen entre otras: Velocidad= (l/t), cuya dimensión es: LT -1 Aceleración =(v/t), cuya dimensión es: LT -2 Fuerza= (ma), cuya dimensión es: MLT -2 Las ecuaciones fundamentales de la física son dimensionalmente homogéneas y en consecuencia se puede esperar que la solución correspondiente a un problema práctico también se pueda expresar por medio de una ecuación dimensionalmente homogénea Características de los vectores Como ya se mencionó antes, un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen. O también denominado punto de aplicación. Es el punto exacto sobre el que actúa el vector. Módulo. Es la longitud o tamaño del vector. Para hallarla es preciso conocer el origen y el extremo del vector, pues para saber cuál es el módulo del vector, debemos medir desde su origen hasta su extremo. Dirección. Viene dada por la orientación en el espacio de la recta que lo contiene. Sentido. Se indica mediante una punta de flecha situada en el extremo del vector, indicando hacia qué lado de la línea de acción se dirige el vector. Hay que tener muy en cuenta el sistema de referencia de los vectores, que estará formado por un origen y dos o tres ejes perpendiculares.
4 Este sistema de referencia permite fijar la posición de un punto cualquiera con exactitud. El sistema de referencia que usaremos, como norma general, es el Sistema de Coordenadas Cartesianas Composición y descomposición de los vectores La composición de vectores se da de la siguiente manera: supongamos que tenemos un vector denotado por la letra A1 (en rojo) y otro denotado por la letra A2 (en azul), cada vector tiene una magnitud determinada y tiene un ángulo característico. En este caso la composición se refiere a la formación del vector A que sería la suma de los vectores A1 y A2, dando origen a una propia magnitud y ángulo del vector A resultante. La descomposición de vectores se da de una manera inversa a la composición de vectores, es decir a partir de un vector se obtienen sus componentes. Supongamos que tenemos el vector a, que tiene su módulo, dirección y sentido característico, al realizar su descomposición obtenemos sus componentes en los ejes x y y, denotados por a y y por a x, que son los que originan a dicho vector a, ya que si se suman darían como resultado el vector a.
5 Suma de vectores por el método gráfico y analítico Método analítico. Suma de vectores. En este caso dado que un vector puede expresarse en términos de sus componentes a = (a 1, a 2 ), se pueden llevar a cabo las operaciones de suma de vectores sumando las componentes correspondientes de la siguiente manera: Suponga que tenemos 2 vectores denotados por b = (b 1, b 2 ) y s = (s 1, s 2 ), la suma de estos vectores es: b + s = (b 1 + s 1, b 2 + s 2 ) Ejemplo Considere los siguientes vectores: Sumar: b + c, f + h, h + b Método gráfico. Método del paralelogramo. c = 2, 4 f = 5, 3 h = 8, 2 b = (2, 1) b + c = 2 + 2, = 4, 5 f + h = 5 + 8, = 13, 5 h + b = 8 + 2, = (10, 3) Nos sirve para sumar dos vectores simultáneos. 1.-Consiste en dibujar los dos vectores a escala con sus puntos de aplicación coincidiendo con el origen del plano cartesiano. 2.-Los vectores forman de esta manera los lados adyacentes de un paralelogramo, los otros dos lados se construyen dibujando líneas paralelas en los vectores de igual magnitud.
6 3.-La resultante se obtendrá de la diagonal del paralelogramo a partir del origen común de los puntos de aplicación de los vectores. El método aplica de la siguiente forma, supongamos que tenemos dos vectores A1 y A2, como vemos en la siguiente figura ambos tiene en común el punto de aplicación y cada cual tiene su ángulo determinado, todo esto se lleva a cabo en un plano cartesiano, si observamos las líneas punteadas corresponden a líneas paralelas a los vectores y que en determinado momento se cruzan, es aquí en este punto de intersección donde ubicaremos el final del vector resultante y será donde pondremos la punta de flecha, posteriormente el origen será el mismo que para los vectores que se sumaron, cabe mencionar que todo esto es a escala, por lo que al medir el vector resultante se tendrá de igual manera un valor a escala. 29 Método de suma consecutiva de vectores. Este método es un poco distinto al anterior debido a que los vectores se van colocando uno a uno hasta terminar y a la vez moviendo el eje de coordenadas, a continuación se ilustra en qué consiste el método.
7 Los ejercicios de este tema se verán y resolverán en clase, es importante llevar juego geométrico, hojas de cuadro o milimétricas y calculadora para la comprensión de este tema Fórmulas importantes para esta unidad Teorema de Pitágoras. En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. 30 Ley de los senos. La ley de los senos establece que en cualquier triángulo la relación de cualquiera de sus lados al seno del ángulo opuesto es constante. En todo triángulo, los lados son directamente proporcionales a los senos de los ángulos opuestos. Ley de los cosenos. En todo triángulo el cuadrado de un lado es igual a la suma de los cuadrados de los otros dos lados menos dos veces el producto de ellos por el coseno del ángulo que forman. C 2 = A 2 + B 2 2ABcos A C B
SUMA Y RESTA DE VECTORES
SUMA Y RESTA DE VECTORES Definición de vectores Un vector es la expresión que proporciona la medida de cualquier magnitud vectorial. Un vector es todo segmento de recta dirigido en el espacio. Cada vector
ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.
ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.
VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.
Vectores. Observación: 1. Cantidades vectoriales.
Vectores. 1. Cantidades vectoriales. Los vectores se definen como expresiones matemáticas que poseen magnitud y dirección, y que se suman de acuerdo con la ley del paralelogramo. Los vectores se representan,
VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características:
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
A.2. Notación y representación gráfica de vectores. Tipos de vectores.
Apéndice A: Vectores A.1. Magnitudes escalares y vectoriales Las magnitudes escalares son aquellas magnitudes físicas que quedan completamente definidas por un módulo (valor numérico) y la unidad de medida
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental
ALGEBRA DE VECTORES Y MATRICES VECTORES
ALGEBRA DE VECTORES Y MATRICES VECTORES DEFINICIÓN DE ESCALAR: Cantidad física que queda representada mediante un número real acompañado de una unidad. EJEMPLOS: Volumen Área Densidad Tiempo Temperatura
Nivelación de Matemática MTHA UNLP 1. Vectores
Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:
Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA
Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro
1. Magnitudes vectoriales
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: V INICADORES DE LOGRO VECTORES 1. Adquiere
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
INTRODUCCIÓN A VECTORES Y MAGNITUDES
C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.
CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA
UNICOMFACAUCA TU DE VIDA Tabla de contenido... 2 PARTES DE UN VECTOR... 3 Notación... 5 Tipos de vectores... 5 Componentes de un vector... 6 Operaciones con vectores... 7 Suma de vectores... 7 Resta de
VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.
VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman
Capítulo 1. Vectores en el plano. 1.1. Introducción
Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................
Representación de un Vector
VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores
Vectores no colineales.
Vectores no colineales. Por definición son aquellos vectores que no tienen igual dirección. La resultante de los mismos no surge de la suma algebraica de los módulos de dichos vectores, sino que deben
Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1
Álgebra Vectorial Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Indice. 1. Magnitudes Escalares y Vectoriales. 2. Vectores. 3. Suma de Vectores. Producto de un vector por un escalar.
LONGITUD MASA TIEMPO AREA VOLUMEN, ETC AREA VOLUMEN VELOCIDAD ACELERACION, ETC LONGITUD MASA TIEMPO, ETC DESPLAZAMIENTO VELOCIDAD ACELERACION, ETC
MAGNITUDES FISICAS SEGÚN SU ORIGEN SEGÚN SU NATURALEZA FUNDAMENTALES DERIVADAS ESCALARES VECTORIALES LONGITUD MASA TIEMPO, ETC AREA VOLUMEN VELOCIDAD ACELERACION, ETC LONGITUD MASA TIEMPO AREA VOLUMEN,
Geometría Tridimensional
Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,
requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.
2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
Vectores: Producto escalar y vectorial
Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con
ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.
ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura
VECTORES MAGNITUDES ESCALARES Y MAGNITUDES VECTORIALES.
VECTORES ING. MARTA LIDIA MERLOS ARAGÓN Resumen. Los vectores son de vital importancia para el estudio de la Estática, la Dinámica, Mecánica de los Fluidos, Electricidad magnetismo, entre otras aplicaciones
Cantidades vectoriales y escalares
Solución: Al sustituir las unidades por las cantidades en cada término, tenemos m m, m = ( ) H ^ ist se obtiene m = m + m Con esto se satisfacen tanto la regla 1 como la regla 2. Por tanto, la ecuación
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa
a. Dibujar los paralelogramos completos, señalar los vértices con letras.
PRACTICO DE VECTORES 1. Dada la siguiente figura, se pide determinar vectores utilizando los vértices. Por ejemplo, el vector, el vector, etcétera. Se pide indicar a. Tres vectores que tengan la misma
1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud
1.1 CANTIDADES VECTORIALES Y ESCALARES Definición de Magnitud Atributo de un fenómeno, cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente. También se entiende
Electrostática: ejercicios resueltos
Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos
Lección 2. Puntos, vectores y variedades lineales.
Página 1 de 11 Lección 2. Puntos, vectores y variedades lineales. Objectivos. En esta lección se repasan las nociones de punto y vector, y se identifican, via coordenadas, con los pares (ternas,...) de
Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas.
4 año secundario Vectores, refrescando conceptos adquiridos Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. El término vector puede referirse al: concepto
ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física
ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.
VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
De acuerdo con sus características podemos considerar tres tipos de vectores:
CÁLCULO VECTORIAL 1. ESCALARES Y VECTORES 1.1.-MAGNITUDES ESCALARES Y VECTORIALES Existen magnitudes físicas cuyas cantidades pueden ser expresadas mediante un número y una unidad. Otras, en cambio, requieren
GUÍA MAGNITUDES FÍSICAS SEGUNDO AÑO
LICEO LUIS CRUZ MARTINEZ DEPARTAMENTO DE FÍSICA RODRIGO VEJAR ANCATÉN GUÍA MAGNITUDES FÍSICAS SEGUNDO AÑO Contenido: Aprendizaje esperado: Magnitudes Físicas Comprender la naturaleza y tipos de magnitudes
Tema 0. REPASO. Javier Rodríguez Ruiz. Curso 2013-2014
Tema 0. REPASO Javier Rodríguez Ruiz Curso 2013-2014 1. Afirmaciones científicas 1.1. Los tres tipos de afirmaciones En toda teoría científica utilizamos afirmaciones que siempre consideraremos ciertas.
Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.
Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por
Unidad 4: Vectores. 4.1 Introducción. 4.2 Vectores: enfoque geométrico
Unidad 4: Vectores 4.1 Introducción En este capítulo daremos el concepto de vector, el cual es una herramienta fundamental tanto para la física como para la matemática. La historia de los vectores se remonta
GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 21
SIGNTU: MTEMTI EN IOLOGI DOENTE: LI.GUSTO DOLFO JUEZ GUI DE TJO PTIO Nº ES: POFESODO Y LIENITU EN IOLOGI _PGIN Nº 4_ GUIS DE TIIDDES Y TJO PTIO Nº OJETIOS: Lograr que el lumno: Interprete la información
ELEMENTOS DEL MOVIMIENTO
ELEMENTOS DEL MOVIMIENTO Unidad 10 CONTENIDOS.- 1.- Introducción..- Magnitudes escalares vectoriales. 3.- Sistemas de referencia. Concepto de movimiento. 4.- Operaciones con vectores. 5.- Traectoria, posición
Unidad I: Algebra de vectores
Unidad I: Algebra de vectores 1.1 Definición de un vector en R2, R3 y su Interpretación geométrica Ejemplo: El segmento dirigido, donde P(2,3) y Q(5,10), es equivalente al Vector, donde las componentes
VECTORES EN EL PLANO
VECTORES EN EL PLANO VECTOR: vectores libres Segmento orientado, con un origen y extremo. Módulo: es la longitud del segmento orientado, es un número positivo y su símbolo es a Dirección: es la recta que
35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico
q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS SUMA DE VECTORES OBJETIVOS Usar la mesa de fuerzas
Cinemática en una Dimensión. Posición, velocidad. Cantidades vectoriales: operación de suma y diferencia.
Cinemática en una Dimensión. Posición, velocidad. Cantidades vectoriales: operación de suma y diferencia. Resumen Para cualquier numero que resulte de una medición es importante especificar su incertidumbre
SESIÓN 2 VECTORES Y SISTEMAS DE FUERZAS
SESIÓN 2 VECTORES Y SISTEMAS DE FUERZAS I. CONTENIDOS: 1. Cantidades escalares y vectoriales. 2. Características de un vector. 3. Sistemas de fuerzas. 4. Resultante de un sistema de fuerzas. 5. Método
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación
1.1 Definición 1.2 Enfoque geométrico 1.3 Igualdad 1.4 Operaciones 1.5 Aplicaciones
. Definición. Enfoque geométrico. Igualdad.4 Operaciones.5 Aplicaciones Objetios. Se persigue que el estudiante: epresente geométricamente un ector de Determine magnitud dirección de un ector. Sume ectores,
164 Ecuaciones diferenciales
64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación
FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE:
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. OBJETIVOS DEL APRENDIZAJE: IDENTIFICAR LAS FUERZAS QUE ACTÚAN SOBRE UN OBJETO. REPRESENTAR
Vectores en el plano
Vectores en el plano Magnitudes escalares y vectoriales En las aplicaciones de las Matemáticas, se denominan magnitudes escalares a todas aquellas propiedades de las cosas que se pueden medir; esto es,
1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica
1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:
Funciones elementales
10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad
TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN AL CÁLCULO VECTORIAL
Página Principal del Profesor: Luis Gerardo Guerrero Ojeda Ir al Capítulo 1 Página Principal de Apuntes de Cursos Pág. Principal de los Apuntes de Teoría TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN
UNIDAD 8 Geometría analítica
UNIDD Geometría analítica. Un enfoque distinto: Pág. de VECTRES EN EL PLN En un sistema de ejes cartesianos, cada punto se describe mediante sus coordenadas: (, 4), (6, 6). La flecha que a de a se llama
Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff
Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.
Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:
1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte
La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)
Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,
INTRODUCCION A LA FISICA NEWTONIANA Manuscrito de cátedra
INTRODUCCION A LA FISICA NEWTONIANA Manuscrito de cátedra ADVERTENCIA: manuscrito en estado de preparación muy preliminar, particularmente en lo que respecta a la secuencia temática, orden y terminación
1. ESCALARES Y VECTORES
1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes
GEOMETRÍA 1.- INTRODUCCIÓN:
GEOMETRÍA 1.- INTRODUCCIÓN: Etimológicamente hablando, la palabra Geometría procede del griego y significa Medida de la Tierra. La Geometría es la parte de las Matemáticas que estudia las idealizaciones
1.1Estándares de longitud, masa y tiempo
CLASES DE FISICA 1 PRIMER PARCIAL 1) UNIDADES DE MEDIDA 2) VECTORES 3) MOVIMIENTO EN UNA DIMENSION 4) MOVIMIENTO EN DOS DIMENSIONES 5) MOVIMIENTO RELATIVO FÍSICA Y MEDICIONES Al igual que todas las demás
Capítulo 9 Vectores en el espacio
Capítulo 9 Vectores en el espacio Introducción El concepto de vector es muy amplio y su aplicación se evidencia en los diferentes campos de las ciencias. En matemáticas, un vector es un elemento de una
VECTORES. Abel Moreno Lorente. February 3, 2015
VECTORES Abel Moreno Lorente February 3, 015 1 Aspectos grácos. 1.1 Deniciones. Un vector entre dos puntos A y B es el segmento de recta orientado que tiene su origen en A y su extremo en B. A este vector
INTRODUCCIÓN ESCUELA DE INGENIERÍA CIVIL Parte de la matemática útil para físicos, matemáticos, ingenieros y técnicos. Permite presentar mediante las ecuaciones de modelo matemático diversas situaciones
6. VECTORES Y COORDENADAS
6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES
, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2
Los vectores Los vectores Distancia entre dos puntos del plano Dados dos puntos coordenados del plano, P 1 = (x 1, y 1 ) y P = (x, y ), la distancia entre estos dos puntos, d(p 1,P ), se calcula de la
El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema
www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 37. Marzo 2014 páginas 139-145 Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Oportunidades para estimular el pensamiento
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
V = Ep /q = w /q = 75. 10-4 J / 12. 10-8 C = 6,25. 10 4 V
Ejercicio resuelto Nº 1 En un punto de un campo eléctrico, una carga eléctrica de 12. 10-8 C, adquiere una energía potencial de 75. 10-4 J. Determinar el valor del Potencial Eléctrico en ese punto. En
TEMA 8: TRAZADOS GEOMÉTRICOS
EDUCACIÓN PLÁSTICA Y VISUAL 3º DE LA E.S.O. TEMA 8: TRAZADOS GEOMÉTRICOS En dibujo técnico, es fundamental conocer los trazados geométricos básicos para construir posteriormente formas o figuras de mayor
VECTORES COORDENADOS (R n )
VECTORES COORDENADOS (R n ) Cómo puede ser representado un número Real? Un número real puede ser representado como: Un punto de una línea recta. Una pareja de números reales puede ser representado por
APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO
APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por
TRABAJANDO CON: APRENDERÁS A:
TRABAJANDO CON: APRENDERÁS A: Vectores Conocer y utilizar la operatoria con vectores. Traslaciones Homotecias Coordenadas cartesianas en el plano y el espacio Rectas y planos en el espacio Ecuaciones cartesianas
NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA
. NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA CONTENIDO Sistema de coordenadas rectangulares o cartesianas Coordenadas cartesianas de un punto Distancia entre dos
3 Espacios Vectoriales
Prof. Susana López 31 3 Espacios Vectoriales 3.1 Introducción Un ector fijo en el plano no es más que un segmento orientado en el que hay que distinguir tres características: -dirección: la de la recta
Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II
Escuela Técnica Superior de Ingeniería Universidad de Sevilla GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II CURSO 2015-2016 Índice general 1. Derivación de funciones
Teoría y Problemas resueltos paso a paso
Departamento de Física y Química 1º Bachillerato Teoría y Problemas resueltos paso a paso Daniel García Velázquez MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL Magnitud es todo aquello que puede ser
CORRIENTE ALTERNA. Fig.1 : Corriente continua
CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones
Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas.
Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas. Profesor(a): Juana Inés Pérez Zárate Periodo: Enero Junio 2012 Topic:
Problemas de funciones para 2º E.S.O
Problemas de funciones para 2º E.S.O 1º) Esboza una representación gráfica de las siguientes funciones: a) La altura a la que se encuentra el asiento de un columpio, al pasar el tiempo. b) La temperatura
Vectores y álgebra vectorial
1. Notas Preliminares Vectores y álgebra vectorial Desde siempre, desde los primeros cursos de Física en educación media, venimos hablando de vectores como cantidades que tienen que ser representadas con
Javier Junquera. Vectores
Javier Junquera Vectores Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas Un sistema de coordenadas que permita especificar posiciones consta de: Un punto de referencia fijo,
Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias:
Actividades recreativas para recordar a los vectores 1) Representa en un eje de coordenadas las siguientes sugerencias: a) Dibuja un segmento y oriéntalo en sentido positivo. b) Dibuja un segmento y oriéntalo
TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)
1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
GUÍA N 1 CUARTO AÑO MEDIO
Colegio Antil Mawida Departamento de Matemática Profesor: Nathalie Sepúlveda Delgado GUÍA N 1 CUARTO AÑO MEDIO Nombre del alumno/a: Fecha: Unidades de aprendizaje: Objetivo Contenidos: Nivel: Vectores
Vectores en R n y producto punto
Vectores en R n y producto punto Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice 4.1. Introducción............................................... 1 4.. Vector..................................................
Anexo a la guía 4 Geometría: ejemplos y comentarios
Anexo a la guía 4 Geometría: ejemplos y comentarios Sergio Dain 26 de mayo de 2014 En las guías 1 y 2 discutimos vectores, covectores y tensores de manera puramente algebraica, sin hacer referencia a la
1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.
Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-
Experimento 2 SUMA DE VECTORES. Objetivos. Teoría. Figura 1 Los vectores se representan con flechas
Experimento 2 SUMA DE VECTORES Objetivos 1. Usar la mesa de fuerzas para equilibrar un punto mediante la aplicación de tres fuerzas concurrentes conocidas 2. Encontrar la resultante de estas fuerzas usando:
TORNEO DE LAS CUENCAS. 2013 Primera Ronda Soluciones PRIMER NIVEL
TORNEO DE LAS CUENCAS 2013 Primera Ronda Soluciones PRIMER NIVEL Problema 1- La figura adjunta está formada por un rectángulo y un cuadrado. Trazar una recta que la divida en dos figuras de igual área.
Algebra Lineal -III: Álgebra Vectorial en R2 and R 3
Algebra Lineal -III: Álgebra Vectorial en R2 and R 3 José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingeniería, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@ugto.mx
MAGNITUDES ESCALARES Y VECTORIALES
CPITULO II MGNITUDES ESCLRES Y VECTORILES 1 CONTENIDO 1. VECTORES Y ESCLRES 2. ELEMENTOS DE UN VECTOR, CONCEPTO DE DIRECCION Y SENTIDO 3. LGEBR DE VECTORES 4. METODOS GRFICOS Y NLITICOS 5. COMPOSICION
Definición operacional, independientemente de cualquier sistema de referencia
Carácter de las magnitudes físicas: Magnitudes escalares y vectoriales. Vectores unitarios, Operaciones con vectores. No todas las magnitudes físicas tienen las mismas características matemáticas El carácter
TEMA 1. MAGNITUDES Y UNIDADES
TEMA 1. MAGNITUDES Y UNIDADES 1.1 Unidades Toda magnitud física debe llevar asociadas sus unidades. Es fundamental para el método científico que las medidas sean reproducibles y, para que esto sea posible,