EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
- María Josefa Esther Navarrete Piñeiro
- hace 2 años
- Vistas:
Transcripción
1 EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS y se representan por letras. Una expresión algebraica es una combinación de letras y números ligada por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas nos permiten, por ejemplo, hallar áreas y volúmenes. VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA El valor numérico de una expresión algebraica, para un determinado valor, es el número que se obtiene al sustituir en ésta el valor numérico dado y realizar las operaciones indicadas. Área del cuadrado: A = l, donde l es el lado del cuadrado. Ejemplo: l = 5cm A = 5 A = 25cm EXPRESIONES ALGEBRAICAS Y POLINOMIOS Objetivos Al final de esta lección, debes ser capaz de: Reconocer expresiones algebraicas. Reconocer si una expresión algebraica es un polinomio. Conseguir el grado y la coeficiente principal de un polinomio. Sumar dos polinomios. Restar dos polinomios. Definición: Una expresión algebraica es un conjunto de cantidades numéricas y literales relacionadas entre sí por los signos de las operaciones aritméticas como sumas, diferencias, multiplicaciones, divisiones, potencias y extracción de raíces. Algunos ejemplos de expresiones algebraicas son: 2xy 3 x y 1 o x 5x + 28
2 Si x es una variable, entonces un monomio en x es una expresión de la forma ax n, en donde a es un numero real y n es un entero no negativo. Un binomio es la suma de dos monomios que no se pueden simplificar y un trinomio es la suma de tres monomios que no se pueden simplificar. Monomio: 5x Binomio: 5x + 2 Trinomio: x + x + 1 Recuerda siempre que un monomio tiene solo un término, un binomio dos términos y un trinomio tres términos. Polinomios Definición: Un polinomio en x es una suma de la forma: a x + a x + + a x + a x + a Donde n es un entero no negativo y cada coeficiente de x es un número real. Si a n es un número diferente de cero, se dice que el polinomio es de grado n. El coeficiente a de la mayor potencia de x es el coeficiente principal del polinomio. Ejemplos de polinomios: Ejemplo Coeficiente principal Grado 3x + 5x + ( 7)x x + 9x + ( 2)x 1 8 5x x Gráficas Una fórmula polinómica tiene la forma y = a x + a x + + a x + a x + a 29
3 SUMA Y RESTA DE POLINOMIOS Suma: Sumamos términos semejantes es decir sumamos aquellos términos cuyas variables y exponentes sean iguales. Los pasos para hacer la suma son: Paso 1: Elimine los paréntesis Paso 2. Agrupe términos semejantes Paso 3. Sume y reste los términos semejantes. Ejemplo: Halla la suma de: (x + 2x 5x + 7) + (4x 5x + 3) x + 2x 5x x 5x + 3 5x 3x 5x + 10 Resta: Funciona igual que la suma solo hay que tener en cuenta que el signo negativo antes de los paréntesis cambia el signo de los términos dentro del paréntesis. Paso 1: Si un paréntesis tiene antepuesto un signo negativo, los signos dentro del paréntesis se afectan. Los signos se cambian a su opuesto y el signo negativo antepuesto al paréntesis pasa a ser positivo. Paso 2: Elimine los paréntesis. Para hacerlo sólo escriba los términos que están dentro del paréntesis con sus signos correspondientes e ignore el signo + entre los dos paréntesis. Paso 3: Agrupe los términos semejantes; es decir los términos con iguales variables e iguales exponentes. Paso 4: Sume y reste los términos semejantes. (x + 2x 5x + 7) (4x 5x + 3) (x + 2x 5x + 7) + ( 4x + 5x 3) x + 2x 5x + 7 4x + 5x 3 3x + 7x 5x + 4 FACTORIZACIÓN Y PRODUCTOS NOTABLES Así como los números naturales pueden ser expresados como producto de dos o más números, los polinomios pueden ser expresados como el producto de dos o más factores algebraicos. Cuando un polinomio no se puede factorizar se denomina irreducible. En los casos en que la expresión es irreducible, solo puede expresarse como el producto del número 1 por la expresión original. 30
4 Al proceso de expresar un polinomio como un producto de factores se le denomina factorización. El proceso de factorización puede considerarse como inverso al proceso de multiplicar. Factorizar, entonces, quiere decir identificar los factores comunes a todos los términos y agruparlos. Los factores comunes son aquellos números que aparecen multiplicando a todos los términos de una expresión algebraica. Estos números pueden estar dados explícitamente o representados por letras. Así, factorizar un polinomio es descomponerlo en dos o más polinomios llamados factores, de tal modo que al multiplicarlos entre sí se obtenga el polinomio original. En otras palabras, dada una expresión algebraica complicada, resulta útil, por lo general, el descomponerla en un producto de varios términos más sencillos. Por otro lado, algunos productos sencillos que tienen una estructura determinada y que pueden ser evaluados de forma directa se denominan Productos notables. Ejemplo 1: Como ya conoces aplicando la propiedad distributiva realizas sin 3(a + b) = 3a + 3b a(2a + 5) = 2a + 5a dificultades este ejercicio: Observar que en todos los casos multiplicamos un monomio por un polinomio. Pero cómo realizar el procedimiento inverso, o sea, cómo expresar los resultados obtenidos en sumas. Precisamente a este procedimiento se le denomina extracción del factor común. Ejemplo 2: Observar en el siguiente recuadro que el factor común numérico es el mayor divisor de los divisores comunes de los coeficientes, siempre que sea diferente de 1, y en el caso de las variables, se extrae la de menor exponente. 31 3y (2y + 4y + 3) = 6y + 12y + 9y 3a + 3b = 3(a + b) Factorcomún numérico 3a 3 = a 3b 3 = b 2a + 5a = a(2a + 5) Factorcomún variable 2a a 5a = 2a a = 5 6y + 12y + 9y = 3y (2y + 4y + 3) Factorcomún número variable 6y 3y
5 El factor que queda después de la extracción del factor común se obtiene dividiendo cada término del polinomio por dicho factor común. Ejemplo 3: Diferencia de dos cuadrados Para comprenderlo mejor este caso debes (x + 3)(x 3) = x 9 remitirte al producto notable (a + b)(a b) = (2m + 1)(2m 1) = 4m 1 a b, el cual aplicamos en la resolución de (y + 0.1)(y 0.1) = y 0.01 ejercicios. Observar que en cada caso obtenemos el cuadrado del primer término menos el cuadrado del segundo término. Luego, para aplicar el procedimiento inverso, se procede como se muestra a continuación: (x + 3)(x 3) = x Hallamos las raíces cuadradas de cada término del 9 x Binomio y planteamos el producto de su suma por = 2 9 = 3 (2m + 1)(2m 1) = 4m su diferencia. 1 Es necesario que sepas que la suma de dos 4m = 2m 1 = 1 cuadrados, por ejemplo x (y + 0.1)(y 0.1) = y + 16, nunca tiene 0.01 factorización. Sin embargo, x 7 se puede factorizar aunque 7 no tenga raíz cuadrada exacta, ya que se puede expresar como el producto de (x + )(x ). Ejemplo 4: Trinomio cuadrado perfecto Al resolver ejercicios se debe desarrollar los (x + 3) = x + 6x + 9 binomios al cuadrado, para ello aplicamos los (y 4) = y 8y + 16 productos notables cuadrado de una suma y de una (2z + 3) = 2z + 12z + 9 diferencia y obtenemos la respuesta correcta. Observar que siempre el resultado es un x trinomio, al cual se le denomina trinomio + 6x + 9 = (x + 3) x cuadrado perfecto. = x; 9 = 3; 2 3 x = 6x y Para factorizar los trinomios obtenidos se 8y + 16 = (y 4) y proceden a la inversa. = y; 16 = 4; 2 4 y = 8y 2z Determinamos la raíz cuadrada de cada término + 12z + 9 = (2z + 3) elevado al cuadrado y comprobamos que el término central es el doble producto 32
6 de los mismos, en este caso el resultado sería la suma o la diferencia de dichos términos. El resultado de la factorización: Observar que la respuesta es el cuadrado de un binomio, ya sea una suma o una diferencia. El procedimiento de hallar las raíces cuadradas de los dos términos cuadrados perfectos y la comprobación de que su doble producto es igual al término central del trinomio, no es necesario que se haga de forma escrita. El signo del binomio resultante coincide con el del término central del trinomio. Ejemplo 5: Trinomio de la forma x + px + q Al resolver ejercicios debes efectuar los productos indicados, para ello aplicamos el producto notable (x + a)(x + b) = x + (a + b)x + ab Observar que siempre el resultado es un trinomio, el cual está formado por el cuadrado del término común, la suma algebraica de los términos no comunes multiplicada por el término común y el producto de los términos no comunes. Para factorizar los trinomios obtenidos se procede a la inversa: determinamos la raíz cuadrada del término elevado al cuadrado y buscamos dos números cuyo producto sea igual al término independiente (q) y la suma algebraica de los mismos sea igual al coeficiente del término central (p). Observar que la respuesta es el producto de dos binomios, precisamente los que multiplicaste al expresar los productos anteriores en sumas. Además, presta atención que si el término independiente del trinomio es positivo, los signos de los dos binomios son iguales y dependen del signo del término central del trinomio. 33
7 Por otra parte, si el término independiente del trinomio es negativo, los signos de los dos binomios son diferentes y debes tener cuidado cuál de los factores hallados colocas detrás de cada signo. Ejemplo 6: Trinomio de la forma mx + px + q, (m 1) Al resolver el ejercicio debes efectuar los productos indicados, para ello aplicamos la propiedad distributiva. Como puedes observar, los trinomios obtenidos son de la forma mx + px + q y los coeficientes m, p y q se obtienen como muestra el recuadro: De modo general se cumple: (ax + b)(cx + d) = acx + (ad + bc)x + bd = mx + px + q; donde m = ac ; q = bd y p = ad + bc Por lo tanto, siempre que sea posible determinar los números a, b, c y d, tales que ac = m; bd = q y ad + bc = p se cumple: mx + px + q = (ax + b)(cx + d) Para determinar estos números se aplica el procedimiento siguiente llamado método de los productos cruzados o de los coeficientes: Veamos en el ejemplo cómo aplicarlo en un ejercicio concreto: Al efectuar la factorización de estos trinomios, aplicando dicho procedimiento, se obtiene la respuesta que se muestra. Observa en el segundo y tercer inciso que hay términos como el 4 y el 6, que tiene más de una combinación para buscar los factores, por lo que debemos ensayar con cuidado colocando el signo adecuado a cada uno de ellos. Es de gran importancia tomar en cuenta las siguientes indicaciones: 34
8 Al buscar los factores de cada término de los extremos, trata de colocar positivos los correspondientes al primer término y variar solo los del segundo. Analizar con cuidado la regla de los signos en el segundo factor. Al colocar la respuesta se hace con los términos que están colocados horizontalmente, y no de manera cruzada. Los trinomios cuadrado perfecto y de la forma mx 2 + px + qse pueden factorizar aplicando el método de los productos cruzados, ya que son casos particulares del trinomio mx 2 + px + q, cuando m = 1. Después de aprender cómo factorizar cada uno de los casos estudiados, es importante que prestes atención a la factorización combinada, o sea, descomponer una expresión algebraica aplicando más de un caso. En el siguiente ejemplo se muestra un ejercicio con estas características: En el inciso a, se combina el factor común y la diferencia de dos cuadrados. En el inciso b, se combina el factor común y el trinomio cuadrado perfecto. En el inciso c, combinamos el factor común con el trinomio de la forma mx 2 + px + q. Por último en el inciso d, se combina la factorización de un trinomio y una diferencia de cuadrados. En este caso el trinomio se denomina bicuadrático, ya que la variable en el primer término está elevada a exponente cuatro; y se puede factorizar de esta manera ya que el exponente del término central es la mitad del exponente de la variable en el primer término. Al factorizar expresiones donde se combine más de un caso, siempre se investigará primero la existencia o no de un factor 35
9 común, y luego se analizará si la expresión resultante es un binomio o un trinomio. A continuación en el siguiente recuadro se resumen los pasos a seguir: Recuerda: La factorización nos permite transformar sumas en productos. Al factorizar trinomios se puede utilizar siempre el método de los productos cruzados, es un método general. Al factorizar se debe verificar primero la existencia o no de un factor común y luego analizar si la expresión es un binomio o un trinomio. Al buscar los signos de los factores en los binomios, al factorizar trinomios, ten en cuenta que: 1. Si el término independiente es positivo, los signos de los factores son iguales y dependen del signo del término central. 2. Si el término independiente es negativo, los signos de los factores son diferentes, uno más y otro menos; y se le coloca el factor mayor el signo que se encuentra en el término central del trinomio. 3. No siempre es posible expresar las sumas como productos, en ese caso se dice que la expresión no tienen factorización. 36
UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG
UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas
PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir
Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.
Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.
FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es...
Semana Productos 7 notables. Parte II Semana 6 Empecemos! El tema que estudiarás en esta sesión está muy relacionado con el de productos notables, la relación entre estos y la factorización, dado que son
Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
MATEMÁTICAS ÁLGEBRA (TIC)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
RESUMEN ALGEBRA BÁSICA
RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO
Contenido: 1. Definición y clasificación. Polinomios.
Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.
Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender
Se dice que dos monomios son semejantes cuando tienen la misma parte literal
Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.
Titulo: FACTORIZACION (Descomposición Factorial) Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril
LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA
GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES
Expresiones algebraicas
Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las
GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS
1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo
UNIDAD 2. Lenguaje algebraico
Matemática UNIDAD 2. Lenguaje algebraico 1 Medio GUÍA N 1 Evaluación de Expresiones Algebraicas Conceptos básicos El lenguaje algebraico es una de las principales formas del lenguaje matemático y es mucho
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.
-PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y
I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS
TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los
open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co
Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo.co 1. Introducción Es usual en matemática intentar simplificar todas las expresiones y definiciones, utilizando el mínimo de elementos o símbolos
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente
1 of 18 10/25/2011 6:42 AM
Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción
Ecuaciones de 2º grado
Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos
5. Producto de dos binomios de la forma: ( ax + c)( bx d )
PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,
Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño
ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan
ECUACIONES DE PRIMER Y SEGUNDO GRADO
7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado
FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto.
FACTORIZACIÓN. Factorizar consiste como su nombre lo indica, en obtener factores y como factores los elementos de una multiplicación, entonces factorizar es convertir una suma en una multiplicación indicada
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.
PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos
1 2 4 PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos Factor Común Factor Común por Agrupación de Términos Diferencia de Cuadrados Perfectos
Los números naturales están ordenados, lo que nos permite comparar dos números naturales:
LOS NUMEROS NATURALES. El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Con los números naturales contamos los elementos de un conjunto (número cardinal). O
Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios.
Colegio San Patricio Matemática 3 año - 2015 Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Factorizar un polinomio es escribirlo como producto de factores irreducibles. El concepto
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las
POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,
FACTORIZACIÓN GUÍA CIU NRO:
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone
CASO I: FACTORIZACION DE BINOMIOS
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: FUNDAMENTOS MATEMATICOS DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N : FACTORIZACION
Una ecuación de segundo grado con una incógnita es de la forma:
ECUACIONES CUADRÁTICAS CON UNA INCÓGNITA Una ecuación de segundo grado con una incógnita es de la forma: ax 2 + bx + c = 0, en donde a, b y c son constantes, con a IR, b IR y c IR, además a 0 y x es la
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
La descomposición de una expresión algebraica en otra más sencilla se llama factorización.
Investiga en el texto básico, la web u otras fuentes bibliográficas acerca de los casos de factorización y redacta un informe escrito donde expliques el procedimiento para factorizar cada caso y plantea
PRÁCTICO: : POLINOMIOS
Página: 1 APUNTE TEÓRICO-PRÁCTICO PRÁCTICO: : POLINOMIOS UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Razonamiento y Resolución de Problemas Carreras: Lic. en Economía, Lic. en Administración, Lic. en
CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio?
CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? Factorizar o Factorear significa "transformar en multiplicación" (o "producto", como también se le llama a la multiplicación).
TEMA 5. Expresiones Algebraicas
TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Tema 6 Lenguaje Algebraico. Ecuaciones
Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias
4 Ecuaciones e inecuaciones
Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,
UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.
UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad
El Teorema Fundamental del Álgebra
El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes
Ecuaciones de primer grado
Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión.
FACTORIZACION Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. Al proceso de encontrar los factores o divisores a partir
a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:
Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí
Polinomios. Un polinomio tiene la siguiente forma general: Donde: y las potencias de las variables descienden en valor
Polinomios Polinomios Definición: Un polinomio es una expresión algebraica que cumple con las siguientes condiciones: Ningún término de la expresión tiene un denominador que contiene variables Ningún término
UNIDAD IV CONTENIDO TEMÁTICO
UNIDAD IV CONTENIDO TEMÁTICO OPERACIONES CON FRACCIONES ALGEBRAICAS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD IV Conceptos Mínimo común múltiplo OPERACIONES CON FRACCIONES
Números reales Conceptos básicos Algunas propiedades
Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
Un monomio es el producto indicado de un número por una o varias letras GRADO 4º
TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:
PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades
Lección 8: Potencias con exponentes enteros
GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.
Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x
Matemática I. Descomposición en factores. Tercera Parte. Ing. Santiago Figueroa Lorenzo Correo electrónico:
Matemática I Descomposición en factores. Tercera Parte Ing. Santiago Figueroa Lorenzo Correo electrónico: santiagofigueroalorenzo@gmail.com Temas Primera Unidad: Elementos Algebraicos Tema 1: Principales
Expresiones Algebraicas en los Números Reales
Operaciones con en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido Operaciones con Operaciones con : Contenido Operaciones con Discutiremos: qué es una: expresión algebraica
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
ECUACIONES POLINÓMICAS CON UNA INCÓGNITA
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
Operatoria algebraica
Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico
DESCOMPOSICIÓN FACTORIAL
6. 1 UNIDAD 6 DESCOMPOSICIÓN FACTORIAL Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques la factorización de polinomios cuyos términos tienen coeficientes
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:
UNIDAD 1: NÚMEROS NATURALES OBJETIVOS
UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,
EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe
1 Álgebral EXPRESIONES ALGEBRAICAS El tripe de un número menos «cinco» en lenguaje algebraico se escribe 3x 5: 3x 5 es una expresión algebraica donde x es la incógnita. La letra x representa un número
EL LENGUAJE ALGEBRAICO
LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos
POLINOMIOS. Matemática Intermedia Profesora Mónica Castro
POLINOMIOS Matemática Intermedia Profesora Mónica Castro Objetivos Definir y repasar los conceptos básicos de polinomios. Discutir los distintos métodos de factorización de polinomios. Establecer distintas
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte
Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones.
Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones. Polinomios Ecuaciones Ecuaciones de primer grado Ecuaciones de segundo grado Ecuaciones polinómicas de grado superior Ecuaciones racionales Ecuaciones
Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.
10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son
POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.
POLINOMIOS Un POLINOMIO es una expresión algebraica de la forma: x 1 + a 0 P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 Siendo a n, a n - 1... a 1, a o números, llamados coeficientes.
Guía Nº 1(B) ALGEBRA
Liceo Industrial Benjamín Dávila Larraín Unidad Técnica Pedagógica Guía Nº (B) ALGEBRA I. Identificación Docente Verónica Moya R. Claudia Paez Subsector/Módulo Matemática Email docente Aprendizaje Esperado
Qué son los monomios?
Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes
Tema 1: Otros tipos de ecuaciones. En este tema trataremos otras ecuaciones distintas a las de primer y segundo grado.
Tema 1: Otros tipos de ecuaciones En este tema trataremos otras ecuaciones distintas a las de primer y segundo grado. Ecuaciones polinómicas Caso general: son las formadas por un polinomio igualado a cero.
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
Guía de Estudios de Algebra
Guía de Estudios de Algebra Licenciatura en Optometría ALTUZAR INGENERIA Índice Presentación... 3 Propósito... 3 Criterios de Evaluación... 3 Bloque Uno: Fundamentos algebraicos... 4 Propósito... 4 Actividades
TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas
TEMA 6 Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas 1. Ecuación de Primer grado con dos incógnitas Vamos a intentar resolver el siguiente problema: En una bolsa hay bolas azules y rojas,
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras