FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE FACTORIZACIÓN DOCENTE: IDALY MONTOYA A.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE FACTORIZACIÓN DOCENTE: IDALY MONTOYA A."

Transcripción

1 DESCOMPOSICION FACTORIAL Factorizar significa descomponer en dos o más componentes. Por ejemplo: 15= 3x 5 ; 7=3 x 9 ; 99 = 9 x 11 ; 6 = 3 x FACTORES: Se llaman factores o divisores de una gran expresión algebraica a las expresiones algebraicas que multiplicadas entre sí dan como el producto la primera expresión. Así. Multiplicando a por a+b tenemos: a(a+b)= a²+ab. a a + b, que multiplicadas entre si dan como producto a²+ab son factores o divisores de a²+ab. DESCOMPONER EN FACTORES O FACTORAR una expresión algebraica es convertirla en el producto indicado de sus factores. CASO I FACTOR COMÚN Sacar el factor común es extraer la literal común de un polinomio, binomio o trinomio, con el menor exponente el divisor común de sus coeficientes. Factor Común Monomio: ab + ac + ad = a(b + c + d) 1. a + ab. 8m 1mn m n 70m a x 36x 3 1x 8x + 56x m n x 110m n x 0m a bc 150ab c + 50abc 00abc 3 bx a b + 6ab 5ab + 8a + ab m x 8x x 0x a 0 a 16 + a 1 a b) Factor Común Polinomio: 8 + a a 1. Descomponer x (a+b) + m (a+b) Los dos términos de esta expresión tienen de factor común el binomio (a+b) Escribo (a+b) como coeficiente de un paréntesis dentro del paréntesis escribo los coeficientes de dividir los dos términos de la expresión dada entre el factor común (a+b), o sea:

2 x( a + b) ma ( + b) = x = m a + b a + b ( ) ( ) Entonces x (a+b) + m (a+b) = (a+b)(x+m). Descomponer x (a-1) (a-1) Factor común (a-1). Dividiendo los dos términos de la expresión dada entre el factor común (a-1), tenemos: x( a 1) = x ( a 1) ( a 1) = ( a 1) Entonces x(a-1) - (a-1)=(a-1) (x-) 1. a (x+1)+b(x+1). x (n+)+n+ 3. x (a+1)-a-1. 3x(x-)-(x-) m-n+x(m+n) 3 a ( a b + 1) b ( a b + 1) 7. (x²+) (m-n)+ (m-n) 8. (a+b-1) (a²+1)-a²-1 CASO III - TRINOMIO CUADRADO PERFECTO Se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un T.C.P. debemos reordenar los términos dejando de primero de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer tercer término los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado. (a + b )² = a² + ab + b² (a - b )² = a² - ab + b² Ejemplo 1: (5x 3)²= 5x² - 30x + 9² Ejemplo : (3x + )²= 9x² + 1x + ² Ejemplo 3: (x + )²= x² + x + ² a ab + b x x 1

3 FACULTAD DE INGENIERIA Y CIENCIAS BASICAS m + m x 1x n 5x x mn + 9m x + 81x a a x x m 70am n + 5a n CASO IV - DIFERENCIA DE CUADRADOS Se identifica por tener dos términos elevados al cuadrado unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma (a-b)(a+b), uno negativo otro positivo. (a)² - (bx)²= (a - bx) (a + bx) La factorización de la diferencia o resta de cuadrados consiste en obtener las raíz cuadrada de cada término representar estas como el producto de binomios conjugados. EJERCICIOS 1. x a 10 1 a 9b 361x 1 6 a x n x 9 a n 5b n 1 a n b x a a

4 CASO VI - TRINOMIO DE LA FORMA X + BX + C Se identifica por tener tres términos, ha una literal con exponente al cuadrado uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente sumados (pudiendo ser números negativos) den como resultado el término del medio. Ejemplo: a² + ª 15 = (a + 5 ) (a - 3) Ejemplo: x² + 5x + 6 = (x + 3) (x + ) Ejemplo: ²+ 0 = ( + ) ( - ) EJERCICIOS 1. x + 7x n + n 3. m 8m m m 168 x 5x 36 x 3x a 11a 8. c 13c m m CASO VII TRINOMIO DE LA FORMA AX + BX + C En este caso se tienen 3 términos: El primer término es un cuadrado perfecto, o sea que tiene raíz cuadrada exacta, el segundo término tiene la mitad del exponente del término anterior el tercer término es un término independiente, ósea sin una parte literal, así: x² + 15x + 9 Para factorizar una expresión de esta forma; primero se cojé el término al lado de x, (en este caso el ) se multiplica por toda la expresión, dejando el segundo término igual pero en paréntesis dejando todo esto en una fracción. Usando como denominador el término que estamos multiplicando, multiplicándolo por el 1

5 Luego separamos en dos fracciones el término Y después procedemos a eliminar las fracciones. EJERCICIOS: Factorar: 1. 6x + 5x ab 9b 0a 6m 13am 15a 30 13ab 3b 11x 6 x 8 6 5x + 5x x x x + x x 6x 16a 15a CASO VIII. CUBO PERFECTO DE BINOMIOS Teniendo en cuenta que los productos notables nos dicen que: Es decir que debe cumplir con las siguientes características: Debe tener cuatro términos. Que tanto el primero como el último término sean cubos perfectos Que el segundo término sea aproximadamente el triplo del cuadrado de la raíz cúbica del primer término multiplicado por la raíz cúbica del último término. Que el tercer término sea más que el triplo de la raíz cúbica del último.

6 EJERCICIOS: x + 9x x 6 8 1a 6a a x 15 0x + 300x a + 150a b + 60ab + 8b a b 6ab 8ab 3 3 m + 3m n + 3mn + n a a + a x + 600x + 960x + 51 x x + 7x a a 33a Suma de cubos perfectos. CASO IX SUMA O DIFERENCIA DE CUBOS PERFECTOS a 3 + b 3 = (a + b)(a - ab + b ) a b Procedimiento para factorizar 1) Se extrae la raíz cúbica de cada término del binomio. ) Se forma un producto de dos factores. 3) Los factores binomios son la suma de las raíces cúbicas de los términos del binomio. ) Los factores trinomios se determinan así: El cuadrado de la primera raíz menos el producto de estas raíces más el cuadrado de la segunda raíz.

7 Ejemplo: Factorizar 8x La raíz cúbica de : 8x 3 es x La raíz cúbica de : 7 es 3 Según procedimiento 8x = (x + 3)[(x) - (x)(3) + (3) ] Luego 8x = (x + 3)(x - 6x + 9) Diferencia de cubos perfectos. a 3 - b 3 = (a - b)(a + ab + b ) a b Procedimiento para factorizar 1) Se extrae la raíz cúbica de cada término del binomio. ) Se forma un producto de dos factores. 3) Los factores binomios son la diferencia de las raíces cúbicas de los términos del binomio. ) Los factores trinomios se determinan así: El cuadrado de la primera raíz más el producto de estas raíces más el cuadrado de la segunda raíz. Ejemplo: Factorizar 16x 9 1 z 1-33m 30 w 18a La raíz cúbica de : 16x 9 1 z 1 es 6x 3 z 7 La raíz cúbica de : 33m 30 w 18a es 7m 10 w 6a Según procedimiento: 16x 9 1 z 1-33m 30 w 18a = (6x 3 z 7-7m 10 w 6a )[(6x 3 z 7 ) + (6x 3 z 7 )(7m 10 w 6a ) + (7m 10 w 6a ) ] Luego 16x 9 1 z 1-33m 30 w 18a = (6x 3 z 7-7m 10 w 6a )(36x 6 8 z 1 + x 3 z 7 m 10 w 6a + 9m 0 w 1a )

8 EJERCICIOS: Factorar: 1. 7a b 3. 6x z x 6a b. 8a 3-6b 3 15x z 7 16x a

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión.

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. FACTORIZACION Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. Al proceso de encontrar los factores o divisores a partir

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA CASOS DE FACTORIZACIÓN El futuro tiene muchos nombres. Para los débiles es lo inalcanzable. Para los temerosos, lo desconocido.

Más detalles

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

DESCOMPOSICION FACTORIAL

DESCOMPOSICION FACTORIAL DESCOMPOSICION FACTORIAL JOSE VICENTE CONTRERAS JULIO Licenciado en Matemáticas y Física ACTIVIDAD DE AUTONOMIA http://jvcontrerasj.com http://www.jvcontrerasj.3a2.com/ FACTORIZAR UNA EXPRESION ES ENCONTRAR

Más detalles

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

5. Producto de dos binomios de la forma: ( ax + c)( bx d ) PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,

Más detalles

Contenido: 1. Definición y clasificación. Polinomios.

Contenido: 1. Definición y clasificación. Polinomios. Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.

Más detalles

PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos

PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos 1 2 4 PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos Factor Común Factor Común por Agrupación de Términos Diferencia de Cuadrados Perfectos

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto.

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto. FACTORIZACIÓN. Factorizar consiste como su nombre lo indica, en obtener factores y como factores los elementos de una multiplicación, entonces factorizar es convertir una suma en una multiplicación indicada

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles

Titulo: FACTORIZACION (Descomposición Factorial) Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios.

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Colegio San Patricio Matemática 3 año - 2015 Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Factorizar un polinomio es escribirlo como producto de factores irreducibles. El concepto

Más detalles

La descomposición de una expresión algebraica en otra más sencilla se llama factorización.

La descomposición de una expresión algebraica en otra más sencilla se llama factorización. Investiga en el texto básico, la web u otras fuentes bibliográficas acerca de los casos de factorización y redacta un informe escrito donde expliques el procedimiento para factorizar cada caso y plantea

Más detalles

CASO I: FACTORIZACION DE BINOMIOS

CASO I: FACTORIZACION DE BINOMIOS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: FUNDAMENTOS MATEMATICOS DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N : FACTORIZACION

Más detalles

. 1. Expresiones algebraicas y reducción Producto y cociente de expresiones algebraicas Productos Notables...

. 1. Expresiones algebraicas y reducción Producto y cociente de expresiones algebraicas Productos Notables... . 1 . 1. Epresiones algebraicas y reducción... 0. Producto y cociente de epresiones algebraicas... 07. Productos Notables.... 1 4. Factorización.... 17 5. Simplificación de fracciones algebraicas.... 6

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICA. ASIGNATURA: MATEMATICA. NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION. PERIODO GRADO N FECHA DURACION

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio?

CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? Factorizar o Factorear significa "transformar en multiplicación" (o "producto", como también se le llama a la multiplicación).

Más detalles

FACTORIZACIÓN GUÍA CIU NRO:

FACTORIZACIÓN GUÍA CIU NRO: República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

Desarrollo Algebraico

Desarrollo Algebraico Capítulo 4 Desarrollo Algebraico E n el presente capítulo aprenderás técnicas para simplificar expresiones algebraicas, reduciendo la mayor cantidad de términos de cada expresión para lograr una apariencia

Más detalles

Factorización de Polinomios

Factorización de Polinomios www.matebrunca.com Prof. Waldo Márquez González Factorización 1 Factorización de Polinomios TEMAS A EVALUAR 1. Factor Común Monomio. 2. Factor Común Polinomio. 3. Factor Común por Agrupación. 4. Diferencia

Más detalles

GUIA Nº: 7 PRODUCTOS NOTABLES

GUIA Nº: 7 PRODUCTOS NOTABLES CORPORACION UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR CUN DEPARTAMENTO DE INGENIERIAS Y CIENCIAS BÁSICAS FUNDAMENTOS DE MATEMATICAS PRODUCTOS NOTABLES Y FACTORIZACION GUIA Nº: 7 PRODUCTOS NOTABLES Productos

Más detalles

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12 C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone

Más detalles

Matemática I. Descomposición en factores. Tercera Parte. Ing. Santiago Figueroa Lorenzo Correo electrónico:

Matemática I. Descomposición en factores. Tercera Parte. Ing. Santiago Figueroa Lorenzo Correo electrónico: Matemática I Descomposición en factores. Tercera Parte Ing. Santiago Figueroa Lorenzo Correo electrónico: santiagofigueroalorenzo@gmail.com Temas Primera Unidad: Elementos Algebraicos Tema 1: Principales

Más detalles

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro POLINOMIOS Matemática Intermedia Profesora Mónica Castro Objetivos Definir y repasar los conceptos básicos de polinomios. Discutir los distintos métodos de factorización de polinomios. Establecer distintas

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

ALGEBRA. Término algebraico Coeficiente numérico Parte literal

ALGEBRA. Término algebraico Coeficiente numérico Parte literal ALGEBRA La importancia del álgebra radica en que constituye el cimiento de casi todas las ramas de la matemática; es una poderosa herramienta para desarrollar el pensamiento analítico. Con la ayuda del

Más detalles

Operatoria algebraica

Operatoria algebraica Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico

Más detalles

DESARROLLO. a r a s = ar s

DESARROLLO. a r a s = ar s ENCUENTRO # 11 TEMA:Operaciones con polinomios CONTENIDOS: 1. División de polinomios. DESARROLLO Ejercicio Reto 1. El resultado de n 4 n 1 es: A) 1 B) 1 n 1 B)4 n 1 D) 4 E) 1 4 4 4 4 4 n 1 4 2. Si para

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos

Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos 7ax³ y² 3x²y ; - ; 4a²b³c 5 Todo término algebraico se compone de un factor literal (letras)

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División

Más detalles

Ecuaciones de 2º grado

Ecuaciones de 2º grado Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos

Más detalles

Fundación Uno A)2011 B)2012 B)2013 D)2014 E)2015. es equivalente a 12 b 7 + a 7 b 12 a 19 a 19 a 13 a 6 b 7 + a 7 b 6 b13 a: D) a8 +a 3 b 5 +b 8

Fundación Uno A)2011 B)2012 B)2013 D)2014 E)2015. es equivalente a 12 b 7 + a 7 b 12 a 19 a 19 a 13 a 6 b 7 + a 7 b 6 b13 a: D) a8 +a 3 b 5 +b 8 ENCUENTRO # 6 TEMA:Fracciones Algebraicas CONTENIDOS:. Máximo Común Divisor 2. Mínimo Común Múltiplo 3. Simplificación de Fraciones Algebraicas 4. Suma de Fracciones Algebraicas 5. Resta de Fracciones

Más detalles

A)2011 B)2012 B)2013 D)2014 E)2015. C) a5 +b 5

A)2011 B)2012 B)2013 D)2014 E)2015. C) a5 +b 5 ENCUENTRO # 6 TEMA: Fracciones algebraicas CONTENIDOS:. Máximo común divisor 2. Mínimo común múltiplo 3. Simplificación de fracciones algebraicas 4. Suma de fracciones algebraicas 5. Resta de fracciones

Más detalles

Guía de Estudios de Algebra

Guía de Estudios de Algebra Guía de Estudios de Algebra Licenciatura en Optometría ALTUZAR INGENERIA Índice Presentación... 3 Propósito... 3 Criterios de Evaluación... 3 Bloque Uno: Fundamentos algebraicos... 4 Propósito... 4 Actividades

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

CONCEPTOS ALGEBRAICOS BASICOS

CONCEPTOS ALGEBRAICOS BASICOS CONCEPTOS ALGEBRAICOS BASICOS OBJETIVOS: 1.- Expresar relaciones numéricas mediante símbolos numéricos y literales. 2.- Reconocer las expresiones algebraicas y sus elementos. 3.- Reducir y evaluar expresiones

Más detalles

Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es...

Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es... Semana Productos 7 notables. Parte II Semana 6 Empecemos! El tema que estudiarás en esta sesión está muy relacionado con el de productos notables, la relación entre estos y la factorización, dado que son

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril

Más detalles

open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co

open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo.co 1. Introducción Es usual en matemática intentar simplificar todas las expresiones y definiciones, utilizando el mínimo de elementos o símbolos

Más detalles

Multiplicación. Adición. Sustracción

Multiplicación. Adición. Sustracción bernardsanz TERMINOLOGÍA ALGEBRAICA Algebra: generalización de la aritmética, la cual representa cantidades por medio de símbolos en lugar de números concretos, estos símbolos representan números cualesquiera.

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

UNIDAD 2. Lenguaje algebraico

UNIDAD 2. Lenguaje algebraico Matemática UNIDAD 2. Lenguaje algebraico 1 Medio GUÍA N 1 Evaluación de Expresiones Algebraicas Conceptos básicos El lenguaje algebraico es una de las principales formas del lenguaje matemático y es mucho

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

PAIEP. Factorización de Expresiones algebraicas

PAIEP. Factorización de Expresiones algebraicas Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Factorización de Expresiones algebraicas Factorizar una expresión algebraica consiste en reescribir la expresión

Más detalles

Capítulo 8. Ecuaciones de segundo grado

Capítulo 8. Ecuaciones de segundo grado Capítulo 8 Ecuaciones de segundo grado Conceptos Toda ecuación de la forma ax' + bx + c _ 0, en la que a ;4, es una ecuación de segundo grado o ecuación cuadrática. La ecuación de segundo grado, en la

Más detalles

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

LICEO MARTA DONOSO ESPEJO

LICEO MARTA DONOSO ESPEJO LICEO MARTA DONOSO ESPEJO PRODUCTOS NOTABLES Se llaman productos notables aquellos resultados de la multiplicación que tienen características especiales, como veremos a continuación: PRODUCTOS NOTABLES:

Más detalles

Titulo: POTENCIACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras

Más detalles

Guía para la Evaluación Diagnóstica en Matemáticas. Programa

Guía para la Evaluación Diagnóstica en Matemáticas. Programa UNIVERSIDAD DE GUADALAJARA Centro Universitario de Ciencias Económico Administrativas División de Economía y Sociedad Departamento de Métodos Cuantitativos Academia de Matemáticas Generales Guía para la

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 9

INSTITUTO VALLADOLID PREPARATORIA página 9 INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles

Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Multiplicación de Polinomios Ejercicios de multiplicación de polinomios www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Antecedentes 2 2. Multiplicación de monomios

Más detalles

Área: Matemática ÁLGEBRA

Área: Matemática ÁLGEBRA Área: Matemática ÁLGEBRA Prof. HENRY AYTE MORALES FICHA DE TRABAJO RECUPERACIÓN 1ro SEC A, B y C I. TEORÍA DE EXPONENTES 1. DEFINICIÓN Es un conjunto de fórmulas que relaciona a los exponentes de las expresiones

Más detalles

Guía de Estudio Prueba de Aptitud Académica Matemática

Guía de Estudio Prueba de Aptitud Académica Matemática Escuela Politécnica PROGRAMA DE PRUEBAS DE ADMISIÓN Guía de Estudio Prueba de Aptitud Académica Matemática Ejército de Guatemala Visite: www.politecnica.edu.gt INTRODUCCIÓN Esta guía de estudio de matemática

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

1 of 18 10/25/2011 6:42 AM

1 of 18 10/25/2011 6:42 AM Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción

Más detalles

2-. Factorizar por el m todo del cubo de un binomio (orden ndolas previamente):

2-. Factorizar por el m todo del cubo de un binomio (orden ndolas previamente): Ejercicios Propuestos Productos Notables y Factorizaci n 1-. Descomponer en dos factores las expresiones siguientes: 1. 64 + a 6 R. (4 + a )(16-4a + a 4 ). a - 15 R. (a - 5)(a + 5a + 5). 1-16m R. (1-6m

Más detalles

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término: Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 57

INSTITUTO VALLADOLID PREPARATORIA página 57 INSTITUTO VALLADOLID PREPARATORIA página 57 página 58 RESTA DE FRACCIONES RESTA La resta de fracciones está basada, por ser el inverso de la operación suma, en las mismas reglas y leyes de la suma, es

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,

Más detalles

PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor

PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor PROBLEMAS RESUELTOS CASO I cuando todos los términos de un polinomio tienen un factor común CASO II factor comun por agrupación de terminos CASO III trinomio cuadrado perfecto CASO IV Diferencia de cuadrados

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO 7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado

Más detalles

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son?

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son? POLINOMIOS Definición: Un polinomio en la variable x es una expresión algebraica formada solamente por la suma de términos de la forma ax n, donde a es cualquier número y n es un número entero no negativo.

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO IES MARIA INMACULADA MATEMÁTICAS º E.S.O. Curso 010-011 GUIÓN DEL TEMA 1. Lenguaje numérico y lenguaje algebraico.. Epresión algebraica.. Valor numérico de una epresión algebraica.. Monomios. 5. Grado

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales Radicales " Raíz: se llama raíz de un número o de una expresión algebraica a todo número o expresión algebraica que elevada a una potencia "n"; reproduce la expresión dada. " Elementos de la raíz. - Radical:

Más detalles

SESIÓN 8 EXPONENTESY RADICALES

SESIÓN 8 EXPONENTESY RADICALES SESIÓN 8 EXPONENTESY RADICALES I. CONTENIDOS: 1. Leyes de los exponentes.. Exponente cero.. Exponente fraccionario. 4. Exponente negativo. 5. Radical. 6. Raíz enésima. 7. Raíces de números positivos y

Más detalles

DESCOMPOSICIÓN FACTORIAL

DESCOMPOSICIÓN FACTORIAL 6. 1 UNIDAD 6 DESCOMPOSICIÓN FACTORIAL Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques la factorización de polinomios cuyos términos tienen coeficientes

Más detalles

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 8º ASIGNATURA: Matemática PERIODO: 2 PROFESORA: Selene Carballo UNIDAD Nº 2 NOMBRE DE LA UNIDAD: Operemos con

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina Colegio Hermanos Carrrera Departamento de Matemática Prof. Roberto Medina Unidad 2 Objetivos: - Conceptos algebraicos básicos - Valoración de expresiones algebraicas - Reducción de términos semejantes

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando

Más detalles

Lección 6: Factorización de Casos Especiales. Dra. Noemí L. Ruiz Limardo 2009

Lección 6: Factorización de Casos Especiales. Dra. Noemí L. Ruiz Limardo 2009 Lección 6: Factorización de Casos Especiales Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán polinomios que representan una Diferencia de

Más detalles
SitemapUnduh APK | Recent Posts | Shining Hearts: Shiawase no Pan (12)